a2 United States Patent

US009459993B2

10) Patent No.: US 9,459,993 B2

Beskrovny et al. 45) Date of Patent: Oct. 4, 2016
(54) PERFORMANCE TESTING OF WEB (58) Field of Classification Search
COMPONENTS USING IDENTITY CPC o GO6F 11/36

INFORMATION

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Evgeny Beskrovny, Ramat Gan (IL);
Bertrand Cormier, Tournefeuille (FR);
Jerome Gout, Toulouse (FR); Omer
Tripp, Har-Adar (IL); Emmanuel
Wurth, Toulouse (FR)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(73) Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 480 days.

@
(22)

Appl. No.: 13/869,424

Filed: Apr. 24, 2013

(65) Prior Publication Data

US 2013/0311829 Al Nov. 21, 2013

(30) Foreign Application Priority Data

May 16, 2012 (GB) 1208598.1

(51) Int. CL

GOGF 9/44 (2006.01)
GOGF 11/36 (2006.01)
GOGF 11/34 (2006.01)
GOGF 11/00 (2006.01)
(52) US.CL
CPC GOGF 11/3668 (2013.01); GOGF 11/006

(2013.01); GOGF 11/3447 (2013.01); GO6F
11/3409 (2013.01); GO6F 11/3466 (2013.01);
GOGF 2201/865 (2013.01); GO6F 2201/875
(2013.01)

0

01

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,310,777 B2* 12/2007 Cirneccccovvvevvennrnne. 715/763
7,490,023 B2 2/2009 Aniszozyk et al.
7,668,112 B2 2/2010 Helfman et al.
2003/0093717 Al* 52003 Masoncccceevvvrnnns 714/38
2009/0089759 Al 4/2009 Rajan et al.
2009/0125976 Al 5/2009 Wassermann et al.
2009/0193391 Al* 7/2009 Miller et al.c...... 717/105

OTHER PUBLICATIONS

UK Appln. No. GB1208598.1 filed May 16, 2012, Search Report,
Aug. 22, 2012, 4 pgs.

* cited by examiner

Primary Examiner — Hang Pan
(74) Attorney, Agent, or Firm — Cuenot, Forsythe &
Kim, LLC

(57) ABSTRACT

Performance testing of web components using identity infor-
mation includes providing a web component for testing
having business logic code and an associated authorization
layer code, locating, using a processor, branches in the
authorization layer code and the business logic code which
are dependent on identity information, and creating, using
the processor, symbolic identities with claims or attributes
having values corresponding to the branch options of the
located branches. The method also includes propagating the
symbolic identities downstream from the branch locations
through the authorization layer code and the business logic
code and analyzing, using the processor, the performance of
each symbolic identity.

20 Claims, 6 Drawing Sheets

PROVIDE A WEB COMPONENT FOR TESTING
HAVING BUSINESS LOGIC
'ASSQCIATED AUTHORIZATION LAYER

GIC CODE AND AN

TRAVERSE AUTHORIZATION LAYER CODE
&0 'AND BUSINESS LOGIC CODE TO LOCATE
BRANCHES WHICH ARE DEPENDENT ON
IDENTITY INFORMATION

CORRESP
BRANCH

CREATE SYMBOLIC IDENTITIES EACH
ONDING TO THE TRUE/FALSE
H OPTIONS FOR Tt

HE LOCATED

PROPAGATE THE SYMBOLIC IDENTITIES.
DOWNSTREAM FROM THE BRANCH
LOCATIONS THROUGH THE AUTHORIZATION
LAYER CODE AND THE BUSINESS LOGIC

oo
!

COLLECT PERFORMANCE RELATED FACTS
a0t DURING PROPAGATION DOWNSTREAM

N BRANCHING LOCATIONS, FORCE
EXECUTION IN THE DIRECTION ENCODED IN

THE SYMBOLIC IDENTITY

CBTAIN SOLL
IDENTITY AND COMP/
MODEL FOR EACH COLLECTED
PERFORMANCE-RELATED FACT

UTIONS FOR EACH SYMBOLIC
D Col

ARE USING A COST
El

o0 DETERMINE WHICH ASPECTS OF THE
IDENTITY AFFECT THE PERFORMANCE

&

FOR THE SUBSET OF DIMENSIONS
COMPRISING AN IDENTITY THAT WERE.
FOUND TO AFFECT PERFORMANCE,
SYNTHESIZE CONGRETE IDENTITIES FOR
FURTHER ANALYSIS

U.S. Patent

Oct. 4, 2016

Sheet 1 of 6

FIG. 1

100\

WEB COMPONENT

US 9,459,993 B2

101

102—~—~4—1

BUSINESS LOGIC

103«

AUTHORIZATION LAYER

r

106\/{ ID INFO }

105

CLIENT

WEB COMPONENT TESTING o
MECHANISM
IDENTITY-DEPENDENT 120
BRANCH LOCATING |/
COMPONENT
SYMBOLIC IDENTITY _/130
CREATING COMPONENT ~
140
PROPAGATING COMPONENT | (/'
FACT COLLECTING | A4
COMPONENT
EXECUTION FORCING _/142
COMPONENT
143
IDENTITY SOLUTION L/
[t
COMPONENT
150
COMPARING COMPONENT {1/
COST MODEL 151
COMPONENT
152
STATISTICAL ANALYSIS | | |~
COMPONENT
CONCRETE IDENTITY /160
COMPONENT —

U.S. Patent Oct. 4, 2016 Sheet 2 of 6 US 9,459,993 B2

FIG. 2

200\

‘\/‘ CREDENTIAL STORE
21

T

| SECURITY TOKEN SERVICE APPLICATION SERVICES [~~201A

222
221

23 USER NAME USER NAME
TOKEN TOKEN

210

APPLICATION SERVICES T ~201B

APPLICATION SERVICES —"~9201C

CLIENT

U.S. Patent Oct. 4, 2016 Sheet 3 of 6 US 9,459,993 B2

FIG. 3

SALES CLOUD

312
SALES SERVER
320
ID FEDERATION ////4
PROVIDER
TARGET
RESOURCE
ID ADAPTER N
321

$§\\\\\\\\ -~

SALES SAAS PORTAL

311

30
CLIENT BROWSER

U.S. Patent Oct. 4, 2016 Sheet 4 of 6 US 9,459,993 B2

FIG. 4

400

\
420 420 401 —_\

IDENTITY PROVIDER RELYING PARTY

0
\-/ TRUST

41

APPLICATION LOGIC || /92

40
42 422 CLAIMS PROCESSING _j

4 /

AUTHENTICATE
43
TOKEN

433
TOKEN
(CLAIMS)

404 CLIENT

U.S. Patent Oct. 4, 2016 Sheet 5 of 6 US 9,459,993 B2

FIG. 5

50 51
4\—— DISPLAY

501 515 516

AN i

502 DATA PROCESSING SYSTEM

SYSTEM MEMORY

PROCESSOR | | VIDEO NETWORK '

4

AN
ROM ADAPTER ADAPTER

6 BIOS
NiEER

SOQ\\//, RAM
.
&
o

\

SOFTWARE
-1

PRIMARY SECONDARY || 1/0
SYSTEM STORAGE STORAGE DEVICES

N

511// 563 432 é;3

U.S. Patent

Oct. 4, 2016 Sheet 6 of 6

FIG. 6

PROVIDE A WEB COMPONENT FOR TESTING
HAVING BUSINESS LOGIC CODE AND AN
ASSOCIATED AUTHORIZATION LAYER

v

602

(

TRAVERSE AUTHORIZATION LAYER CODE
AND BUSINESS LOGIC CODE TO LOCATE
BRANCHES WHICH ARE DEPENDENT ON

IDENTITY INFORMATION

L

603

CREATE SYMBOLIC IDENTITIES EACH
CORRESPONDING TO THE TRUE/FALSE
BRANCH OPTIONS FOR THE LOCATED
BRANCHES

v

604

PROPAGATE THE SYMBOLIC IDENTITIES
DOWNSTREAM FROM THE BRANCH
LOCATIONS THROUGH THE AUTHORIZATION
LAYER CODE AND THE BUSINESS LOGIC
CODE

v

605,

COLLECT PERFORMANCE-RELATED FACTS
DURING PROPAGATION DOWNSTREAM

l

606\ |

IN BRANCHING LOCATIONS, FORCE
EXECUTION IN THE DIRECTION ENCODED IN
THE SYMBOLIC IDENTITY

607\ |

OBTAIN SOLUTIONS FOR EACH SYMBOLIC
IDENTITY AND COMPARE USING A COST
MODEL FOR EACH COLLECTED
PERFORMANCE-RELATED FACT

608,

DETERMINE WHICH ASPECTS OF THE
IDENTITY AFFECT THE PERFORMANCE

v

609_/

FOR THE SUBSET OF DIMENSIONS
COMPRISING AN IDENTITY THAT WERE
FOUND TO AFFECT PERFORMANCE,
SYNTHESIZE CONCRETE IDENTITIES FOR
FURTHER ANALYSIS

US 9,459,993 B2

US 9,459,993 B2

1
PERFORMANCE TESTING OF WEB
COMPONENTS USING IDENTITY
INFORMATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of United Kingdom
Application Number 1208598.1 filed on May 16, 2012,
which is fully incorporated herein by reference.

BACKGROUND

Cloud computing is gaining increasing momentum as
more and more services are being migrated into the cloud.
As part of the process of migrating an application or a web
service into the cloud, an authorization layer is normally
added to mediate access to the service.

In many cases this layer uses fine-grained identity infor-
mation about the user (contrary to coarse identifiers, such as
the user’s role) for making authorization decisions.

The entire system, including the original business logic
and the added authorization layer, may be committed to
service-level agreements in terms of response time. For
example, if a customer is soliciting the help of a web service
residing on the cloud, then that customer would like to
guarantee a response time of up to X seconds to an arbitrary
request.

The challenge this scenario brings forward is that while
the business logic typically undergoes extensive perfor-
mance testing via unit tests, integration tests, and quality
assurance teams, the entire system including both the origi-
nal business logic and the new authorization layer built on
top of it, is hard to test.

The reason for this is the necessity to supply the identity
information. In many cases different identities lead an
execution flow of the code to different branches that might:

(1) make calls to external entities for special authentica-
tion requests (in federated environments the authentication
is done by the external entity which has the trust relationship
with the cloud authentication service);

(i) access back-end databases to correlate and validate
user-provided information;

(iii) perform CPU-intensive processing of incoming data,
such as encryption and decryption of parts of it.

The problem here is to find those identities which are
going to produce meaningful results. Sometimes, a worst
case scenario that can be used for evaluating service level
agreements is interesting and, sometimes, it is interesting to
see whether a particular property has an impact on perfor-
mance and to test the service with various values for those
properties.

Therefore, there is a need in the art to address the
aforementioned problems.

Although this problem particularly arises with the identity
management technologies required in cloud computing, it
also applies to non-cloud web services and web application
which use identity frameworks.

BRIEF SUMMARY

A method for performance testing of web components
using identity information includes providing a web com-
ponent for testing having business logic code and an asso-
ciated authorization layer code, locating, using a processor,
branches in the authorization layer code and the business
logic code which are dependent on identity information, and

10

15

20

25

30

35

40

45

50

55

60

65

2

creating, using the processor, symbolic identities with
claims or attributes having values corresponding to the
branch options of the located branches. The method further
includes propagating the symbolic identities downstream
from the branch locations through the authorization layer
code and the business logic code and analyzing, using the
processor, performance of each symbolic identity.

A system for performance testing of web components
using identity information includes a processor programmed
to initiate executable operations. The executable operations
include providing a web component for testing having
business logic code and an associated authorization layer
code, locating branches in the authorization layer code and
the business logic code which are dependent on identity
information, and creating symbolic identities with claims or
attributes having values corresponding to the branch options
of the located branches. The executable operations further
include propagating the symbolic identities downstream
from the branch locations through the authorization layer
code and the business logic code and analyzing, using the
processor, performance of each symbolic identity.

A computer program product for performance testing of
web components using identity information includes a com-
puter readable storage medium having program code stored
thereon. The program code is executable by a processor to
perform a method. The method includes providing, using the
processor, a web component for testing having business
logic code and an associated authorization layer code, locat-
ing, using the processor, branches in the authorization layer
code and the business logic code which are dependent on
identity information, and creating, using the processor, sym-
bolic identities with claims or attributes having values
corresponding to the branch options of the located branches.
The method further includes propagating, using the proces-
sor, the symbolic identities downstream from the branch
locations through the authorization layer code and the busi-
ness logic code and analyzing, using the processor, perfor-
mance of each symbolic identity.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter regarded as the invention is particu-
larly pointed out and distinctly claimed in the concluding
portion of the specification. The invention, both as to orga-
nization and method of operation, together with objects,
features, and advantages thereof, may best be understood by
reference to the following detailed description when read
with the accompanying drawings.

Preferred embodiments of the present invention will now
be described, by way of example only, with reference to the
following drawings in which:

FIG. 1 is block diagram of an example embodiment of a
system in accordance with the present invention;

FIG. 2 is a block diagram of an example embodiment of
an environment in which the present invention may be
implemented;

FIG. 3 is a block diagram of a further example embodi-
ment of an environment in which the present invention may
be implemented;

FIG. 4 is a block diagram of a further example embodi-
ment of an environment in which the present invention may
be implemented;

FIG. 5 is a block diagram of an embodiment of a computer
system in which the present invention may be implemented;
and

US 9,459,993 B2

3

FIG. 6 is a flow diagram of an example embodiment of a
method in accordance with the present invention.

DETAILED DESCRIPTION

This invention relates to the field of performance testing
of web components. In particular, the invention relates to
performance testing of web components in the presence of
identity information.

According to a first aspect of the present invention there
is provided a method for performance testing of web com-
ponents using identity information, including: providing a
web component for testing having business logic code and
an associated authorization layer code; locating branches in
the authorization layer code and the business logic code
which are dependent on identity information; creating sym-
bolic identities with claims or attributes having values
corresponding to the branch options of the located branches;
propagating the symbolic identities downstream from the
branch locations through the authorization layer code and
the business logic code; and analyzing the performance of
each symbolic identity.

According to a second aspect of the present invention
there is provided a system for performance testing of web
components using identity information, wherein the web
component for testing has business logic code and an
associated authorization layer code, the system comprising:
an identity-dependent branch locating component for locat-
ing branches in the authorization layer code and the business
logic code which are dependent on identity information; a
symbolic identity creating component for creating symbolic
identities with claims or attributes having values corre-
sponding to the branch options of the located branches; a
propagating component for propagating the symbolic iden-
tities downstream from the branch locations through the
authorization layer code and the business logic code; and a
comparing component for analyzing the performance of
each symbolic identity.

According to a third aspect of the present invention there
is provided a computer program product for performance
testing of web components using identity information, the
computer program product comprising a computer readable
storage medium having computer-readable program code
embodied therewith, the computer-readable program code
configured to: provide a web component for testing having
business logic code and an associated authorization layer
code; locate branches in the authorization layer code and the
business logic code which are dependent on identity infor-
mation; create symbolic identities with claims or attributes
having values corresponding to the branch options of the
located branches; propagate the symbolic identities down-
stream from the branch locations through the authorization
layer code and the business logic code; and analyze the
performance of each symbolic identity.

According to a fourth aspect of the present invention there
is provided a method substantially as described with refer-
ence to the figures.

According to a fifth aspect of the present invention there
is provided a system substantially as described with refer-
ence to the figures.

The described aspects of the invention provide the advan-
tage of performing a static analysis of the code in order to
find the identity dependent branches within the code that are
likely to have an impact on the performance perspective and
then during the test to use those identities. It is also possible
to divide the infinite space of the possible identities into

10

15

20

25

30

35

40

45

50

55

60

65

4

equivalence classes that differ by the performance and to
perform testing for each class.

It will be appreciated that for simplicity and clarity of
illustration, elements shown in the figures have not neces-
sarily been drawn to scale. For example, the dimensions of
some of the elements may be exaggerated relative to other
elements for clarity. Further, where considered appropriate,
reference numbers may be repeated among the figures to
indicate corresponding or analogous features.

In the following detailed description, numerous specific
details are set forth in order to provide a thorough under-
standing of the invention. However, it will be understood by
those skilled in the art that the present invention may be
practiced without these specific details. In other instances,
well-known methods, procedures, and components have not
been described in detail so as not to obscure the present
invention.

Method and system are provided for performance testing
of web components under specific identities in order to
evaluate performance.

This solution applies to performance testing of web
components which have or use an authorization layer with
identity management. In cloud computing, an end user must
login to the cloud in order to access a web component and,
therefore, an authorization layer is provided. In a non-cloud
web component, an authorization layer may be provided if
access to the web component is restricted or the user requires
validation or authentication.

The term web component is defined as including web
services, web applications, both in the cloud and not in the
cloud.

The described method and system perform analysis of the
authorization layer as well as the business logic to find those
branches in the code which are dependent on identity
information. Then each branch is assessed from the perfor-
mance perspective using some cost model to see which
particular properties are important from the performance
perspective. After that, it is possible to create synthetic
identities that produce different response times and to test
the performance using those identities.

The analysis of the authorization layer and the business
logic layer of a web component may be carried out by static
analysis performing automatic code analysis; this may also
be referred to as program analysis or static program analysis.

Referring to FIG. 1, a schematic diagram shows an
example embodiment of the described system 100.

A web component 101 may be provided including busi-
ness logic 102. The web component 101 may be a web
service or web application and may be provided in a cloud
computing environment or as a non-cloud web component
both accessible by a client 104 via a network 105.

An authorization layer 103 may be provided between the
client 104 and the web component 101 for processing
identity information 106 of a client 104 user to determine
authorization of the client 104 user to access the web
component 101.

In the context of cloud computing, the authorization layer
103 may use fine-grained identity information in an identity
management system. A user at a client 104 must log-on to a
cloud computing identity management system before
accessing web components offered in the cloud.

In the context of non-cloud computing, the authorization
layer 103 may be provided by an identity management
system independent from the web component 101 or may be
provided as part of the web component 101. Such identity
management systems may be required for the web compo-

US 9,459,993 B2

5

nent 101 if the web component involves payments, age
restrictions, or sensitive information, etc.

Identity management systems providing the authorization
layer 103 both in cloud computing and non-cloud environ-
ments may take various forms. For example, they may use
secure messaging mechanisms such as provided by the Web
Services Security model.

In one embodiment, WS-Trust (Web Services Trust speci-
fication) may be used to define security token exchange to
enable issuance and dissemination of credentials within
different trust domains. WS-Trust may be used with business
to business communication via web services in which back-
end web services talk to each other.

In another embodiment, WS-Federation (Web Services
Federation specification) may be used to define mechanisms
to allow different security realms to federate by allowing and
brokering trust of identities, attributes, authentication
between participating web services. WS-Federation is a
browser oriented standard in which the client is a browser
which talks to an application.

In a further embodiment, claims-based identity may be
used which provides a means for an application to acquire
identity information of users. It provides a consistent
approach for applications running on a local server, a web
server, or in the cloud. Claims-based identify abstracts the
individual elements of identity and access control into two
parts: a claim, and an issuer or authority. A claim is a
statement that a user makes about itself or another subject.
For example, the claim may relate to a name, group, buying
preference, privilege, association, capability, etc. Claims are
packaged into tokens issued by an identity provider.

All these example embodiments may be provided in a
cloud computing environment which uses an identity man-
agement infrastructure, or in a non-cloud computing envi-
ronment, for example, for financial transactions which need
authorization in a non-cloud environment.

A web component testing mechanism 110 is provided for
performance testing of a web component 101 using identity
information. The web component 101 is tested together with
the authorization layer 103 through which a user must access
the web component 101.

The web component testing component 110 may include
the following components. An identity-dependent branch
locating component 120 may be provided for traversing the
authorization layer’s 103 code and the business logic 102
code to locate code branches where the branching test is
dependent on identity information.

A symbolic identity creating component 130 may be
provided for creating symbolic identities each identity cor-
responding to a unique combination of the true/false values
for the branching tests located by the identity-dependent
branch locating component 120. A symbolic identity is an
artificial identity which may have identity claims or attri-
butes with certain values. It is possible that no real user
exists with such values and it is possible that some of the
combinations of the values are not legal.

A propagating component 140 may be provided for propa-
gating each of the symbolic identities created by the sym-
bolic identity creating component 130 downstream starting
from the code section where the identity information is read
and propagating through the authorization layer’s 103 code
and the business logic 102 code of the web component 101.

The propagating component 140 may include a fact
collecting component 141 for collecting performance-re-
lated facts during the propagation of each symbolic identity
through the code. For example, the performance-related

10

15

20

25

30

35

40

45

50

55

60

65

6

facts may be about the degree of loop nesting, database calls,
requests made to external web services, file-system opera-
tions, etc.

The propagating component 140 may also include an
execution forcing component 142 for forcing execution in
the direction encoded in the symbolic identity at any branch-
ing locations in the code.

The propagating component 140 may also include an
identity solution component 143 for obtaining a solution for
each of the symbolic identities regarding the propagation.
This may calculate the number of performance relevant
facts, for example, it may be said that for a certain token
there is loop nesting with the depth of 10 and 1 database call.

A comparing component 150 may be provided for com-
paring the solutions obtained by propagating each of the
symbolic identities through the authorization layer’s 103
code and the business logic code of the web component 101.

The comparing component 150 may include a cost model
component 151 for providing a cost model for each of the
collected performance-related facts.

The comparing component 150 may also include a sta-
tistical analysis component 152 for determining which
aspects of a symbolic identity may affect the performance.

A concrete identity component 160 may be provided for
synthesizing concrete identities including the aspects that
were found to affect performance. These concrete identities
may be used to investigate and test the web component 101
further.

Referring to FIG. 2, a block diagram shows a first
embodiment of an example environment 200 in which the
web component testing mechanism may be applied. In this
embodiment, WS-Trust communication is used for authori-
zation before a client 204 may access web components in the
form of application services 201A, B, C.

An authorization layer may be provided in the form of a
security token service 210 having a credential store 211 for
users’ credential information.

A client 204 may provide 221 a user name token 231 to
the security token service 210. The security token service
210 may check the client’s user name token 231 and respond
222 with a security token such as a SAML token 232
(Security Assertion Markup Language token).

The client 204 may provide 223 the SAML token 232 and
the user name token 231 to any of the application services
201A, B, C in order to provide authorization.

Referring to FIG. 3, a block diagram shows a second
embodiment of an example environment 300 in which the
web component testing mechanism may be applied. In this
embodiment, WS-Federation communication is used
between a client browser 304 and a sales cloud 310. Autho-
rization of the client browser 304 may be carried out in the
cloud 310 by an ID federation provider 320 with an ID
adapter 321.

The client browser 304 may access the sales cloud SaaS
(software as a service) portal 311 which checks the client
browser’s 304 authorization via the ID federation provider
320. The ID federation provider 320 may allow the client
browser 304 access to the sales server 312 and target
resources 313.

Referring to FIG. 4, a block diagram shows a third
embodiment of an example environment 400 in which the
web component testing mechanism may be applied. In this
embodiment, claims-based identity is used between a client
404 and a relying party 401 providing a web component.

In FIG. 4, a trust relationship 430 may exist 420 between
an identity provider 410 and the relying party 401 providing
the web component. A client 404 may request 421 a claim

US 9,459,993 B2

7

authentication 431 by the identity provider 410 which may
issue 422 a token 432. The client 404 may provide 423 the
token 433 of the claim to the relying party 401. Logic at the
relying party 401 may include claims processing 403 and
application logic 402.

Referring to FIG. 5, an exemplary system for implement-
ing aspects of the invention includes a data processing
system 500 suitable for storing and/or executing program
code including at least one processor 501 coupled directly or
indirectly to memory elements through a bus system 503.
The memory elements may include local memory employed
during actual execution of the program code, bulk storage,
and cache memories which provide temporary storage of at
least some program code in order to reduce the number of
times code must be retrieved from bulk storage during
execution.

The memory elements may include system memory 502
in the form of read only memory (ROM) 504 and random
access memory (RAM) 505. A basic input/output system
(BIOS) 506 may be stored in ROM 504. System software
507 may be stored in RAM 505 including operating system
software 508. Software applications 510 may also be stored
in RAM 505.

The system 500 may also include a primary storage means
511 such as a magnetic hard disk drive and secondary
storage means 512 such as a magnetic disc drive and an
optical disc drive. The drives and their associated computer-
readable media provide non-volatile storage of computer-
executable instructions, data structures, program modules
and other data for the system 500. Software applications
may be stored on the primary and secondary storage means
511, 512 as well as the system memory 502.

The computing system 500 may operate in a networked
environment using logical connections to one or more
remote computers via a network adapter 516.

Input/output devices 513 may be coupled to the system
either directly or through intervening I/O controllers. A user
may enter commands and information into the system 500
through input devices such as a keyboard, pointing device,
or other input devices (for example, microphone, joy stick,
game pad, satellite dish, scanner, or the like). Output devices
may include speakers, printers, etc. A display device 514 is
also connected to system bus 503 via an interface, such as
video adapter 515.

Referring to FIG. 6, a flow diagram 600 shows an
example embodiment of the described method. The objec-
tive of the method is to bind between identities and perfor-
mance characteristics of the web component.

A web component is provided 601 having business logic
code and an associated authorization layer.

The authorization layer’s code and the business logic code
is traversed 602 to locate code branches where the branching
test is dependent on identity information. These branches
may be marked by T={tl, . . . tn}.

Symbolic identities may be created 603. Each symbolic
identity may correspond to a unique combination of true/
false values for the tests at the located branches in T. In this
way, artificial identities may be created which have identity
claims or attributes with certain values.

If an identity token has 1 claim, then 2n symbolic iden-
tities may be created. However, if an identity token has more
than one claim, there is a need to multiply on the number of
claims. In this case, the code may be analyzed to see which
claims are used and how many of them there are. Then, for
each claim, those that cause true/false values are taken.
When a symbolic identity is built, it may include all the
values for all the potential claims.

10

15

20

25

30

35

40

45

50

55

60

65

8

The symbolic identities may be propagated 604 down-
stream through the authorization layer’s code and the busi-
ness logic code starting from code statements where identity
information is read.

Throughout the downstream propagation, performance-
related facts may be collected 605, for example, about the
degree of loop nesting, database calls, requests made to
external web services, file-system operations, etc.

In branching locations from T, execution is forced 606 in
the direction encoded in the symbolic identity.

Solutions for each of the symbolic identities may be
obtained 607. Solutions may calculate the number of per-
formance relevant facts (for example, the depth of loop
nesting and number of database calls) and the solutions may
be compared using a cost model for each of the collected
performance facts.

Statistical analysis may be used to determine 608 which
aspects of the identity may affect the performance. For
example, among 5 possible identity claims, only 2 may
make a difference from the performance perspective.

For the subset of dimensions comprising an identity that
were found to affect performance, concrete identities may be
synthesized 609 for further inspection/testing/etc. by the
user. For example, tests may be built for the 2 claims that
make a difference from the performance perspective and not
for the other 3 claims. The user may be interested, for
example, in finding a worst-case execution of the end-to-end
system and/or instances of great variance in execution times
between different identities, etc.

Although the algorithm is exponential in the number of
branches, it should work perfectly well in practice. This is
because: (i) typically, the number of identity-related
branches is very small (2-3), and (ii) there is a wide range
of static-analysis techniques that can be used to share
information between different symbolic identities, which
allow much less work to be done compared to independent
consideration of all the symbolic identities.

Example 1

To make this algorithm more concrete, a real-world
example is considered: a web service selling goods. Assume
that as a means of payment, the web service receives either
a credit card or a proprietary card.

The form of payment may be encoded in the customer
token, and may be accessed and processed by the web
service’s business logic. The token may also contain further
information, such as whether the user is a student or a senior,
in which case (s)he may be eligible for discounts.

Since the business logic cares both about the form of
payment and about the status of the user (student/senior),
find two branches should be found in the code: t1 and t2,
respectively. This induces four symbolic identities: student/
cc, student/pe, senior/cc and senior/pc (where cc and pc are
abbreviations of credit card and proprietary card, respec-
tively).

Now assuming that only the means of payment is impor-
tant from a performance perspective, because in the case of
proprietary money, only a simple check of the customer’s
balance is required, but if a credit card is used, then the credit
card web service needs to be contacted to retrieve balance
information. This is significantly more expensive (perfor-
mance-wise) than running a local check.

The static analysis may recover all this information by
registering the following performance-wise facts for each
symbolic identity:

US 9,459,993 B2

9

Symbolic Identity Performance Facts

Student/cc Call to external web service (Visa)
Student/pc No facts
Senior/cc Call to external web service (Visa)
Senior/pc No facts

The table above suggests the following trends based on
simple correlation analysis:

The cc/pce property is positively correlated with the call to
an external web service.

The student/senior property is not correlated with the
performance behaviour of the web service.

Based on these observations, the analysis can synthesize
two concrete identities, e.g. for student/cc and student/pc.
The user can then exercise the web service with these
identities and gain insight into its worst execution time, as
well as the difference between the execution times under the
two identities.

Example 2

Suppose that the token contains 2 claims: age; and
whether the token holder has a driver license or not.

If the code is structured such that regardless of the test
whether the relevant individual has a driver’s license, most
of'the ensuing execution path is the same (i.e., both branches
merge into the same execution path), then it is possible to
use only two different symbolic identities—distinguished by
whether the person is above or below 18—instead of the
naive approach of testing all four of the possible symbolic
identities.

Static analysis is able to reach this observation. For
example, top-down data-flow analysis techniques would
identify the commonality between the code paths originating
in the two branches of the driver’s license test.

It should be mentioned here is that many of the compo-
nents in the cloud are inaccessible without specifying an
identity information and so testing them in general is hard as
you need to decide which specific identity out of many
possible you take for testing the component. For perfor-
mance testing specifically it is especially important because
identities do affect the overall response time and therefore it
is important to find the specific properties of the identities
that make a significant difference from the response time
perspective.

The invention can take the form of an entirely hardware
embodiment, an entirely software embodiment or an
embodiment containing both hardware and software ele-
ments. In a preferred embodiment, the invention is imple-
mented in software, which includes but is not limited to
firmware, resident software, microcode, etc.

The invention can take the form of a computer program
product accessible from a computer-usable or computer-
readable medium providing program code for use by or in
connection with a computer or any instruction execution
system. For the purposes of this description, a computer
usable or computer readable medium can be any apparatus
that can contain, store, communicate, propagate, or transport
the program for use by or in connection with the instruction
execution system, apparatus or device.

The medium can be an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system (or
apparatus or device) or a propagation medium. Examples of
a computer-readable medium include a semiconductor or
solid state memory, magnetic tape, a removable computer

20

25

30

35

40

45

55

10

diskette, a random access memory (RAM), a read only
memory (ROM), a rigid magnetic disk and an optical disk.
Current examples of optical disks include compact disk read
only memory (CD-ROM), compact disk read/write (CD-R/
W), and DVD.
Improvements and modifications can be made to the
foregoing without departing from the scope of the present
invention.
What is claimed is:
1. A method for performance testing of web components
using identity information, comprising:
providing a web component for testing having business
logic code and an associated authorization layer code;

locating, using a processor, branches which are dependent
on identity information in the authorization layer code
and the business logic code;

creating, using the processor, symbolic identities with

claims or attributes having values corresponding to the
branch options of the located branches;

propagating the symbolic identities downstream from the

branch locations through the authorization layer code
and the business logic code; and

analyzing, using the processor, performance of each sym-

bolic identity.

2. The method as claimed in claim 1, wherein creating
symbolic identities includes creating a symbolic identity
corresponding to a unique combination of the true or false
values for the located branches.

3. The method as claimed in claim 1, wherein the identity
information includes one or more claims, and creating
symbolic identities includes creating symbolic identities for
each claim.

4. The method as claimed in claim 1, wherein propagating
the symbolic identities downstream includes:

in branching locations, forcing execution in the direction

encoded in the symbolic identity.

5. The method as claimed in claim 1, wherein analyzing
performance of each symbolic identity includes:

collecting performance-related facts during propagation;

and

providing cost models for each performance-related fact.

6. The method as claimed in claim 5, wherein analyzing
performance of each symbolic identity includes:

obtaining solutions including the number of performance-

related facts for each symbolic identity; and
comparing the solutions using the cost models for the
performance-related facts.

7. The method as claimed in claim 1, including:

determining which aspects of the symbolic identities

affect the performance.

8. The method as claimed in claim 1, including:

determining a subset of dimensions of a symbolic identity

found to affect performance; and

synthesizing a concrete identity for further analysis.

9. The method as claimed in claim 8, wherein determining
a subset of dimensions of a symbolic identity found to affect
performance includes determining identity claims which
affect performance.

10. The method as claimed in claim 1, wherein the web
component is provided via a network and the authorization
layer code is provided by an identity provider.

11. The method as claimed in claim 1, wherein the web
component is provided in a cloud computing environment
and the authorization layer code is provided by the cloud
computing environment.

12. A system for performance testing of web components
using identity information, the system comprising:

US 9,459,993 B2

11

a processor programmed to initiate executable operations

comprising:

providing a web component for testing having business
logic code and an associated authorization layer
code;

locating branches which are dependent on identity
information in the authorization layer code and the
business logic code;

creating symbolic identities with claims or attributes
having values corresponding to the branch options of
the located branches;

propagating the symbolic identities downstream from
the branch locations through the authorization layer
code and the business logic code; and

analyzing, using the processor, performance of each
symbolic identity.

13. The system as claimed in claim 12, wherein propa-
gating the symbolic identities downstream includes:

in branching locations, forcing execution in the direction

encoded in the symbolic identity.

14. The system as claimed in claim 12, wherein analyzing
performance of each symbolic identity includes:

collecting performance-related facts during propagation;

and

providing cost models for each performance-related fact.

15. The system as claimed in claim 14, wherein analyzing
performance of each symbolic identity includes:

obtaining solutions including the number of performance-

related facts for each symbolic identity; and
comparing the solutions using the cost models for the
performance-related facts.

16. The system as claimed in claim 12, wherein the
processor is programmed to initiate a further executable
operation comprising:

determining which aspects of the symbolic identities

affect the performance.

15

25

30

35

12

17. The system as claimed in claim 12, wherein the
processor is programmed to initiate further executable
operations comprising:

determining a subset of dimensions of a symbolic identity

found to affect performance; and

synthesizing a concrete identity for further analysis.

18. The system as claimed in claim 12, wherein the web
component is provided via a network and the authorization
layer code is provided by an identity provider.

19. The system as claimed in claim 12, wherein the web
component is provided in a cloud computing environment
and the authorization layer code is provided by the cloud
computing environment.

20. A computer program product for performance testing
of' web components using identity information, the computer
program product comprising:

a computer readable storage device having program code

stored thereon,

the program code executable by a processor to perform:

providing, using the processor, a web component for
testing having business logic code and an associated
authorization layer code;

locating, using a processor, branches which are depen-
dent on identity information in the authorization
layer code and the business logic code;

creating, using the processor, symbolic identities with
claims or attributes having values corresponding to
the branch options of the located branches;

propagating, using the processor, the symbolic identi-
ties downstream from the branch locations through
the authorization layer code and the business logic
code; and

analyzing, using the processor, performance of each
symbolic identity, wherein the computer usable stor-
age device does not consist of a transitory, propa-
gating signal.

